Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 13(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1378449

ABSTRACT

Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.


Subject(s)
Adenoviridae/genetics , COVID-19/prevention & control , Capsid/chemistry , Adenoviridae/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Genes, Viral , Genetic Vectors , Humans , Immunity , Oncolytic Virotherapy/methods , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
2.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1120219

ABSTRACT

Adenovirus-based gene transfer vectors are the most frequently used vector type in gene therapy clinical trials to date, and they play an important role as genetic vaccine candidates during the ongoing SARS-CoV-2 pandemic. Immediately upon delivery, adenovirus-based vectors exhibit multiple complex vector-host interactions and induce innate and adaptive immune responses. This can severely limit their safety and efficacy, particularly after delivery through the blood stream. In this review article we summarize two strategies to modulate Ad vector-induced immune responses: extensive genomic and chemical capsid modifications. Both strategies have shown beneficial effects in a number of preclinical studies while potential synergistic effects warrant further investigations.


Subject(s)
Adenoviridae/genetics , Adenoviridae/immunology , Capsid/immunology , Genetic Vectors/genetics , Genetic Vectors/immunology , Animals , COVID-19 , COVID-19 Vaccines/immunology , Capsid Proteins/genetics , Humans , Immunity , Immunogenicity, Vaccine , SARS-CoV-2/genetics , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL